Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genetic analysis of D-xylose metabolism by endophytic yeast strains of Rhodotorula graminis and Rhodotorula mucilaginosa.

Identifieur interne : 002E69 ( Main/Exploration ); précédent : 002E68; suivant : 002E70

Genetic analysis of D-xylose metabolism by endophytic yeast strains of Rhodotorula graminis and Rhodotorula mucilaginosa.

Auteurs : Ping Xu [États-Unis] ; Renata Bura ; Sharon L. Doty

Source :

RBID : pubmed:21931522

Abstract

Two novel endophytic yeast strains, WP1 and PTD3, isolated from within the stems of poplar (Populus) trees, were genetically characterized with respect to their xylose metabolism genes. These two strains, belonging to the species Rhodotorula graminis and R. mucilaginosa, respectively, utilize both hexose and pentose sugars, including the common plant pentose sugar, D-xylose. The xylose reductase (XYL1) and xylitol dehydrogenase (XYL2) genes were cloned and characterized. The derived amino acid sequences of xylose reductase (XR) and xylose dehydrogenase (XDH) were 32%∼41% homologous to those of Pichia stipitis and Candida. spp., two species known to utilize xylose. The derived XR and XDH sequences of WP1 and PTD3 had higher homology (73% and 69% identity) with each other. WP1 and PTD3 were grown in single sugar and mixed sugar media to analyze the XYL1 and XYL2 gene regulation mechanisms. Our results revealed that for both strains, the gene expression is induced by D-xylose, and that in PTD3 the expression was not repressed by glucose in the presence of xylose.

DOI: 10.1590/S1415-47572011000300018
PubMed: 21931522
PubMed Central: PMC3168190


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genetic analysis of D-xylose metabolism by endophytic yeast strains of Rhodotorula graminis and Rhodotorula mucilaginosa.</title>
<author>
<name sortKey="Xu, Ping" sort="Xu, Ping" uniqKey="Xu P" first="Ping" last="Xu">Ping Xu</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Forest Resources, College of the Environment, University of Washington, Seattle, WA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Forest Resources, College of the Environment, University of Washington, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Bura, Renata" sort="Bura, Renata" uniqKey="Bura R" first="Renata" last="Bura">Renata Bura</name>
</author>
<author>
<name sortKey="Doty, Sharon L" sort="Doty, Sharon L" uniqKey="Doty S" first="Sharon L" last="Doty">Sharon L. Doty</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21931522</idno>
<idno type="pmid">21931522</idno>
<idno type="doi">10.1590/S1415-47572011000300018</idno>
<idno type="pmc">PMC3168190</idno>
<idno type="wicri:Area/Main/Corpus">002C90</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002C90</idno>
<idno type="wicri:Area/Main/Curation">002C90</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002C90</idno>
<idno type="wicri:Area/Main/Exploration">002C90</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genetic analysis of D-xylose metabolism by endophytic yeast strains of Rhodotorula graminis and Rhodotorula mucilaginosa.</title>
<author>
<name sortKey="Xu, Ping" sort="Xu, Ping" uniqKey="Xu P" first="Ping" last="Xu">Ping Xu</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Forest Resources, College of the Environment, University of Washington, Seattle, WA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Forest Resources, College of the Environment, University of Washington, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Bura, Renata" sort="Bura, Renata" uniqKey="Bura R" first="Renata" last="Bura">Renata Bura</name>
</author>
<author>
<name sortKey="Doty, Sharon L" sort="Doty, Sharon L" uniqKey="Doty S" first="Sharon L" last="Doty">Sharon L. Doty</name>
</author>
</analytic>
<series>
<title level="j">Genetics and molecular biology</title>
<idno type="eISSN">1678-4685</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Two novel endophytic yeast strains, WP1 and PTD3, isolated from within the stems of poplar (Populus) trees, were genetically characterized with respect to their xylose metabolism genes. These two strains, belonging to the species Rhodotorula graminis and R. mucilaginosa, respectively, utilize both hexose and pentose sugars, including the common plant pentose sugar, D-xylose. The xylose reductase (XYL1) and xylitol dehydrogenase (XYL2) genes were cloned and characterized. The derived amino acid sequences of xylose reductase (XR) and xylose dehydrogenase (XDH) were 32%∼41% homologous to those of Pichia stipitis and Candida. spp., two species known to utilize xylose. The derived XR and XDH sequences of WP1 and PTD3 had higher homology (73% and 69% identity) with each other. WP1 and PTD3 were grown in single sugar and mixed sugar media to analyze the XYL1 and XYL2 gene regulation mechanisms. Our results revealed that for both strains, the gene expression is induced by D-xylose, and that in PTD3 the expression was not repressed by glucose in the presence of xylose.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">21931522</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>11</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1678-4685</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>34</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Genetics and molecular biology</Title>
<ISOAbbreviation>Genet Mol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Genetic analysis of D-xylose metabolism by endophytic yeast strains of Rhodotorula graminis and Rhodotorula mucilaginosa.</ArticleTitle>
<Pagination>
<MedlinePgn>471-8</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1590/S1415-47572011000300018</ELocationID>
<Abstract>
<AbstractText>Two novel endophytic yeast strains, WP1 and PTD3, isolated from within the stems of poplar (Populus) trees, were genetically characterized with respect to their xylose metabolism genes. These two strains, belonging to the species Rhodotorula graminis and R. mucilaginosa, respectively, utilize both hexose and pentose sugars, including the common plant pentose sugar, D-xylose. The xylose reductase (XYL1) and xylitol dehydrogenase (XYL2) genes were cloned and characterized. The derived amino acid sequences of xylose reductase (XR) and xylose dehydrogenase (XDH) were 32%∼41% homologous to those of Pichia stipitis and Candida. spp., two species known to utilize xylose. The derived XR and XDH sequences of WP1 and PTD3 had higher homology (73% and 69% identity) with each other. WP1 and PTD3 were grown in single sugar and mixed sugar media to analyze the XYL1 and XYL2 gene regulation mechanisms. Our results revealed that for both strains, the gene expression is induced by D-xylose, and that in PTD3 the expression was not repressed by glucose in the presence of xylose.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Ping</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>School of Forest Resources, College of the Environment, University of Washington, Seattle, WA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bura</LastName>
<ForeName>Renata</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Doty</LastName>
<ForeName>Sharon L</ForeName>
<Initials>SL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>07</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Brazil</Country>
<MedlineTA>Genet Mol Biol</MedlineTA>
<NlmUniqueID>100883590</NlmUniqueID>
<ISSNLinking>1415-4757</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">D-xylose metabolism</Keyword>
<Keyword MajorTopicYN="N">Rhodotorula graminis</Keyword>
<Keyword MajorTopicYN="N">Rhodotorula mucilaginosa</Keyword>
<Keyword MajorTopicYN="N">xylitol</Keyword>
<Keyword MajorTopicYN="N">xylitol dehydrogenase</Keyword>
<Keyword MajorTopicYN="N">xylose reductase</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>09</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>05</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21931522</ArticleId>
<ArticleId IdType="doi">10.1590/S1415-47572011000300018</ArticleId>
<ArticleId IdType="pii">gmb-34-3-471</ArticleId>
<ArticleId IdType="pmc">PMC3168190</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Evol Biol. 2008;8:156</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18495022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Microbiol. 2000 Jan;23(1):63-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10946407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2007 Mar;25(3):319-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17334359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Clin Nutr. 1989 Jun;49(6):1228-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2658536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1988 Jan;54(1):50-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16347538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Laryngoscope. 2004 Nov;114(11):2021-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15510034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Am. 2010 Feb;302(2):64-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20128225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Colo Dent Assoc. 1993 Apr;71(3):19-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8408742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2008 Sep;30(9):1515-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18431677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 1998 Apr;49(4):399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9615481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Dairy Sci. 1996 Mar;79(3):372-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8708096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2002 Spring;98-100:577-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12018283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2010 Jul;87(4):1303-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20535464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2006 Dec;73(3):631-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16896602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2009 Sep;113(Pt 9):973-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19539760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2006 Jun;17(3):320-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16713243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2000 Apr;11(2):187-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10753763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Jun;72(6):4207-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16751533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1991 Dec 20;109(1):89-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1756986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Biotechnol. 2006;2006(4):26818</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17057362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1983 Apr;129(4):965-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6684148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biotechnol. 1989;9(1):1-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2670247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mikrobiologiia. 2004 Mar-Apr;73(2):163-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15198025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pract Odontol. 1991 Aug;12(8):59-60, 62, 64-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1796084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Biochem Eng Biotechnol. 1983;27:1-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6437152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell Fact. 2007;6:5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17280608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1983 Jan;153(1):163-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6336730</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Washington (État)</li>
</region>
<settlement>
<li>Seattle</li>
</settlement>
<orgName>
<li>Université de Washington</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Bura, Renata" sort="Bura, Renata" uniqKey="Bura R" first="Renata" last="Bura">Renata Bura</name>
<name sortKey="Doty, Sharon L" sort="Doty, Sharon L" uniqKey="Doty S" first="Sharon L" last="Doty">Sharon L. Doty</name>
</noCountry>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Xu, Ping" sort="Xu, Ping" uniqKey="Xu P" first="Ping" last="Xu">Ping Xu</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002E69 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002E69 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21931522
   |texte=   Genetic analysis of D-xylose metabolism by endophytic yeast strains of Rhodotorula graminis and Rhodotorula mucilaginosa.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21931522" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020